Imagination Lab Unit Plan: Architecture

STEM Focus:	Mathematics (Grades 3-5)
Topic:	Geometry/Spatial Reasoning
Goal:	Reason with shapes and their attributes.
CCSS Connection:	CCSS.MATH.CONTENT.3.G.A.1 Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
Pre-Activity Assessment	 [handout] Use the grid below to Design a Robot using as many shapes as possible. How many could you create? Count them. How many can you name? Label them. Remember, your lines can be at a slant or diagonal, but their corners (vertices) need to touch a dot on the grid. Many of these shapes are <u>Quadrilaterals</u> because they have four sides. Color them.
Central Questions	 Why are different shapes important? Can they help us build better structures? Can they communicate different moods or ideas?
Warm-up Activity: Tangram Challenge	 Open your Tangram envelope. How many different shapes do you see? Count them. Name them. Are any of the shapes the same? Categorize them. We have a <u>Triangle</u>, <u>Square</u>, and a <u>Parallelogram</u>. Which one is not a <u>Quadrilateral</u>? Why? Discuss. Can you combine any of the shapes to make "twin shapes" the exact same size? Make them. How many more "twins" can you make? Make those. (These are called <u>Congruent Shapes</u>.)
Book Connection and Exploration: Iggy Peck, Architect	 Look at the skyscraper buildings on the page. Use your shapes and a partner's to see which building you can create. Build it. Now challenge your partner. Make a shape only using your Tangrams. See if you partner can make the same shape. Play. (Again, these will become <u>Congruent Shapes</u>.)
Design Challenge Part 1: Building 2D and 3D Shapes	 Imagine a mini-golf course. What shapes can you design and build as obstacles? Make them. Arrange your obstacles on your mini-golf course to challenge another team. Play. Look at another team's design. Which ones are <u>Quadrilaterals</u>? Which ones are not? Discuss them.
Book Connection: Iggy Peck, Architect	 Look through the book. What structure does it look like Iggy Peck builds at the end? Explore/Discuss. Do you notice any <u>Triangles</u> in the overall shape? These are the strongest shape but why? Discuss. Show images of bridges. (Project slide images.) Do you see any <u>Triangles</u>? Explore/Discuss.
Design Challenge Part 2: Building a Bridge	 A "dangerous river" has now been placed on your mini-golf course. Design a bridge that helps a golf ball safely cross it. Does your design need any <u>Triangles</u>? Build it.

	 Now see if you can safely put your golf ball across another team's bridge. Play.
Design Journal Entry:	 Use today's vocabulary words when sketching and describing your mini-golf course. (I notice, It reminds me of, I wonder)
Additional Focus:	 But wait! Can shapes also communicate moods or feelings? Explore *Logo Shapes: What They Mean and Why They're Important (URL in Additional Resources)

Additional Resources:

Categorizing Shapes Check https://www.education.com/worksheet/article/categorizing-shapes-check/

*Logo Shapes: What They Mean and Why They're Important <u>https://looka.com/blog/logo-shapes-</u> <u>meanings/#:~:text=The%20psychology%20of%20shapes&text=Circular%20shapes%3A%20Unity%2C</u> <u>%20community%2C,Aggression%2C%20masculinity%2C%20strength%2C%20progress</u>

Making Quadrilaterals (updated, see below) https://www.education.com/worksheet/article/making-guadrilaterals/

Naming Quadrilaterals https://www.education.com/worksheet/article/naming-quadrilaterals/

Tangram as Teaching Aid in Mathematics - Part 1 or 2 https://www.youtube.com/watch?v=D0nu2tvsYsA

Tangram as Teaching Aid in Mathematics - Part 2 of 2 https://www.youtube.com/watch?v=ye2PmJy16_Y

Using Tangrams to Tell a Story: The Coyote and the Bear https://www.youtube.com/watch?v=C4wFwBYebYg